## 1/4- to 1/11-DUTY FIP ${ }^{\text {TM }}$ (VFD) CONTROLLER/DRIVER

The $\mu$ PD16312 is a FIP (fluorescent Indicator Panel, or Vacuum Fluorescent Display) controller/driver that is driven on a $1 / 4$ - to $1 / 11$ duty factor. It consists of 11 segment output lines, 6 grid output lines, 5 segment/grid output drive lines, a display memory, a control circuit, and a key scan circuit. Serial data is input to the $\mu$ PD16312 through a three-line serial interface. This FIP controller/driver is ideal as a peripheral device for a single-chip microcomputer.

## FEATURES

- Multiple display modes (11-segment \& 11-digit to 16 -segment \& 4-digit)
- Key scanning ( $6 \times 4$ matrix)
- Dimming circuit (eight steps)
- High-voltage output (Vdd - 35 V max).
- LED ports (4 chs., 20 mA max).
- General-purpose input port (4 bits)
- No external resistors necessary for driver outputs (P-ch open-drain + pull-down resistor output)
- Serial interface (CLK, STB, Din, Dout)


## ORDERING INFORMATION

| Part Number | Package |
| :---: | :---: |
| $\mu$ PD16312GB-3B4 | 44-pin plastic QFP ( $\square 10)$ |

## BLOCK DIAGRAM



## PIN CONFIGURATION (Top View)



Use all power pins.

## Pin Function

| Symbol | Pin Name | Pin No | Description |
| :---: | :---: | :---: | :---: |
| Din | Data input | 6 | Input serial data at rising edge of shift clock, starting from the low order bit. |
| Dout | Data output | 5 | Output serial data at the falling edge of the shift clock, starting from low order bit. This is N -ch open-drain output pin. |
| STB <br> 4U.com | Strobe | 9 | Initializes serial interface at the rising or falling edge of the $\mu$ PD16312. It then waits for reception of a command. Data input after STB has fallen is processed as a command. While command data is processed, current processing is stopped, and the serial interface is initialized. While STB is high, CLK is ignored. |
| CLK | Clock input | 8 | Reads serial data at the rising edge, and outputs data at the falling edge. |
| OSC | Oscillator pin | 44 | Connect resistor to this pin to determine the oscillation frequency to this pin. |
| $\mathrm{Seg}_{1} / \mathrm{KS}_{1}$ to Seg6/KS 6 | High-voltage output | 15 to 20 | Segment output pins (Dual function as key source) |
| $\mathrm{Seg}_{7}$ to $\mathrm{Seg}_{11}$ | High-voltage output (segment) | 21 to 25 | Segment output pins |
| Grid ${ }_{1}$ to Grid 6 | High-voltage output (grid) | 37 to 32 | Grid output pins |
| Seg $_{12} /$ Grid $_{11}$ to Seg $_{16} /$ Grid $_{7}$ | High-voltage output (segment/grid) | 26, 28 to 31 | These pins are selectable for segment or grid driving. |
| LED ${ }_{1}$ to LED ${ }_{4}$ | LED output | 42 to 39 | CMOS output. +20 mA max. |
| $\mathrm{KEY}_{1}$ to KEY ${ }_{4}$ | Key data input | 10 to 13 | Data input to these pins is latched at the end of the display cycle. |
| SW ${ }_{1}$ to $\mathrm{SW}_{4}$ | Switch input | 1 to 4 | These pins constitute a 4-bit general-purpose input port. |
| VDD | Logic power | 14,38 | $5 \mathrm{~V} \pm 10$ \% |
| Vss | Logic ground | 7,43 | Connect this pin to system GND. |
| Vee | Pull-down level | 27 | VDD - 35 V max. |

## Display RAM Address and Display Mode

The display RAM stores the data transmitted from an external device to the $\mu$ PD16312 through the serial interface, and is assigned addresses as follows, in 8 bits unit:

| Seg ${ }_{1}$ | Seg4 | Seg8 |  |  |  | DIG ${ }_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 HL | I | 00Hu | 01Hı | 1 | 01 Hu |  |
| 02HL | I | 02Hu | 03HL | I | 03 Hu | DIG2 |
| 04HL | I | 04Hu | 05HL | , | 05 Hu | DIG3 |
| 06Hı | 1 | 06Hu | 07Hı | I | 07Hu | DIG4 |
| 08Hı | I | 08Hu | 09HL | I | 09 Hu | DIG5 |
| OAHL | I | OAHu | OBHL | I | OBHu | DIG6 |
| 0 CHz | 1 | 0 CHu | ODHı | , | ODHu | $\mathrm{DIG}_{7}$ |
| 0EHı | I | OEHu | 0FHL | 1 | OFHu | DIG8 |
| 10 HL | I | 10 Hu | 11HL | I | 11 Hu | DIG9 |
| 12 HL | I | 12 Hu | 13HL | I | 13 Hu | DIG10 |
| 14 HL | I | 14 Hu | 15 HL | 1 | 15 Hu | DIG11 |



Lower 4 bits Higher 4 bits

## Key Matrix and Key-Input Data Storage RAM

The key matrix is made up of a $6 \times 4$ matrix, as shown below.


The data of each key is stored as illustrated below, and is read with the read command, starting from the least significant bit.

| $\mathrm{KEY}_{1} \ldots . . \mathrm{KEY}_{4}$ | $\mathrm{KEY}_{1} \ldots . . \mathrm{KEY}_{4}$ |  |
| :---: | :---: | :---: |
| $\mathrm{Seg}_{1} / \mathrm{KS}{ }_{1}$ | $\mathrm{Seg}_{2} / \mathrm{KS}_{2}$ |  |
| $\mathrm{Seg}_{3} / \mathrm{KS}_{3}$ | $\mathrm{Seg}_{4} / \mathrm{KS}_{4}$ |  |
| Seg5/KS5 | $\mathrm{Seg}_{6} / \mathrm{KS}$ 6 | \ Reading sequence |

## LED Port

Data is written to the LED port with the write command, starting from the least port's least significant bit. When a bit of this port is 0 , the corresponding LED lights; when the bit is 1 , the LED truns off. The data of bits 5 through 8 are ignored.


On power application, all LEDs are unlit.

## SW Data

SW data is read with the read command, starting from the least significant bit. Bits 5 through 8 of the SW data are 0.


## Commands

Commands set the display mode and status of the FIP driver.
The first 1 byte input to the $\mu$ PD16312 through the Din pin after the STB pin has fallen is regarded as a command.
If STB is set high while commands/data are transmitted, serial communication is initialized, and the commands/data being transmitted are invalid (however, the commands/data previously transmitted remain valid).

## (1) Display mode setting commands

These commands initialize the $\mu$ PD16312 and select the number of segments and the number of grids ( $1 / 4$ to $1 / 11$ duty, 11 segments to 16 segments).
When these commands are executed, the display is forcibly turned off, and key scanning is also stopped. To resume display, the display command "ON" must be executed. If the same mode is selected, however, nothing happens.


On power application, the 11-digit, 11-segment mode is selected.

## (2) Data setting commands

These commands set data write and data read modes.


On power application, the normal operation and address increment modes are set.

## (3) Address setting commands

These commands set an address of the display memory.


If address $\mathbf{1 6 H}$ or higher is set, data is ignored, until a valid address is set.

On power application, the address is set to 00 H .

## (4) Display control commands



On power application, the $1 / 16$ pulse width is set and the display is turned off.

Note On power application, key scanning is stopped.

## Key Scanning and Display Timing



One cycle of key scanning consists of one frame, and data in a $6 \times 4$ matrix is stored in RAM.

## Serial Communication Format

Reception (command/data write)


Transmission (data read)


Because the Dout pin is an N-ch, open-drain output pin, be sure to connect an external pull-up resistor to this pin ( $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ ).

Note When data is read, a wait time twait of $1 \mu \mathrm{~s}$ is necessary since the rising of the eighth clock that has set the command, until the falling of the first clock that has read the data.

ABSOLUTE MAXIMUM RATINGS ( $\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$ )

| PARAMETER | SYMBOL | RATINGS | UNIT |
| :---: | :---: | :---: | :---: |
| Logic Supply Voltage | VDD | -0.5 to +7.0 | V |
| Driver Supply Voltage | Vee | $V_{\text {dd }}+0.5$ to $\mathrm{V}_{\text {dd }}-40$ | V |
| Logic Input Voltage | $V_{11}$ | -0.5 to $\mathrm{V}_{\text {dd }}+0.5$ | V |
| FIP Driver Output Voltage | Vo2 | $V_{\text {Ee }}-0.5$ to $\mathrm{V}_{\text {dd }}+0.5$ | V |
| LED Driver Output Current | lo1 | +25 | mA |
| FIP Driver Output Current | lo2 | $\begin{gathered} -40 \text { (grid) } \\ -15 \text { (segment) } \end{gathered}$ | mA |
| Power Dissipation | Pd | $800^{\text {Note }}$ | mW |
| Operating Ambient temperature | Topt | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | $\mathrm{T}_{\text {stg }}$ | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

Note Derate at $-6.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ or higher.

RECOMMENDED OPERATING RANGE ( $\mathrm{Ta}=\mathbf{- 2 0}$ to $70^{\circ} \mathrm{C}$, $\mathrm{Vss}=\mathbf{0} \mathrm{V}$ )

| PARAMETER | SYMBOL | MIN. | TYP. | MAX. | UNIT | TEST CONDITIONS |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Logic Supply Voltage | $\mathrm{V}_{\mathrm{DD}}$ | 4.5 | 5 | 5.5 | V |  |
| High-Level Input Voltage | $\mathrm{V}_{\mathrm{IH}}$ | $0.7 \cdot \mathrm{VDD}_{\mathrm{DD}}$ |  | $\mathrm{V}_{\mathrm{DD}}$ | V |  |
| Low-Level Input Voltage | $\mathrm{V}_{\mathrm{IL}}$ | 0 |  | $0.3 \cdot \mathrm{VDD}_{\mathrm{DD}}$ | V |  |
| Driver Supply Votlage | $\mathrm{V}_{\mathrm{EE}}$ | 0 |  | $\mathrm{VDD}_{\mathrm{DD}}-35$ | V |  |

Maximum power consumption Pmax. = FIP driver dissipation + RL dissipation + LED driver dissipation + dynamic power consumption

Where segment current $=3 \mathrm{~mA}$, grid current $=15 \mathrm{~mA}$, and LED current $=20 \mathrm{~mA}$,
FIP driver dissipation $=$ number of segments $\times 6+$ number of grids/(number of grids +1$) \times 30(\mathrm{~mW})$
RL dissipation $=\left(\mathrm{VDD}-\mathrm{VEE}^{2} / 50 \times(\right.$ number of segments +1$)(\mathrm{mW})$
LED driver dissipation $=$ number of LEDs $\times 20(\mathrm{~mW})$
Dynamic power consumption $=\mathrm{VDD} \times 5(\mathrm{~mW})$

Example
Where $\mathrm{V}_{\mathrm{EE}}=-25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{dD}}=5 \mathrm{~V}$, and in 16 -segment and 6 -digit modes,
FIP driver dissipation $=16 \times 6+6 / 7 \times 30=122$
RL dissipation $=30^{2} / 50 \times 17=306$
LED driver dissipation $=4 \times 20=80$
Dynamic power consumption $=5 \times 5=25$
Total 553 mW

ELECTRICAL CHARACTERISTICS ( $\mathrm{Ta}=-20$ to $+70^{\circ} \mathrm{C}, \mathrm{Vdd}=4.5$ to $\left.5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Vee}=\mathrm{Vdd}-35 \mathrm{~V}\right)$

| PARAMETER | SYMBOL | MIN. | TYP. | MAX. | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High-Level Output Voltage | Vон1 | 0.9 Vdo |  |  | V | LED $1-$ LED $_{4}$, $\mathrm{IOH}_{1}=-1 \mathrm{~mA}$ |
| Low-Level Output Voltage | Vol1 |  |  | 1 | V | LED $1-$ LED 4 , lol $=20 \mathrm{~mA}$ |
| Low-Level Output Voltage | Vol2 |  |  | 0.4 | V | Dout, loL2 $=4 \mathrm{~mA}$ |
| High-Level Output Current | Іон21 | -3 |  |  | mA | $V_{0}=V_{D D}-2 \mathrm{~V}$, Seg $_{1}$ to Seg ${ }_{11}$ |
| High-Level Output Current | loH22 | -15 |  |  | mA | $V_{o}=V_{D D}-2 \mathrm{~V}$, Grid1 to Grid6 Seg $_{12} /$ Grid $_{11}$ to Seg ${ }_{16 /}$ Grid7 |
| Driver Leakage Current | loleak |  |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-35 \mathrm{~V}$, driver off |
| Output Pull-Down Resistor | RL | 50 | 100 | 150 | K $\Omega$ | Driver output |
| Input Current | $\\|$ |  |  | $\pm 1$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {do }}$ or $\mathrm{V}_{\text {ss }}$ |
| High-Level Input Voltage | $\mathrm{V}_{\mathrm{H}}$ | 0.7 VDD |  |  | V |  |
| Low-Level Input Voltage | VIL |  |  | 0.3 Vdo | V |  |
| Hysteresis Voltage | $\mathrm{V}_{\mathrm{H}}$ |  | 0.35 |  | V | CLK, Din, STB |
| Dynamic Current Consumption | loddyn |  |  | 5 | mA | Under no load, display off |

SWITCHING CHARACTERISTICS ( $\mathrm{Ta}=-20$ to $+70^{\circ} \mathrm{C}$, $\mathrm{VdD}=4.5$ to 5.5 V , Vee $=-30 \mathrm{~V}$ )

| PARAMETER | SYMBOL | MIN. | TYP. | MAX. | UNIT | TEST CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oscillation Frequency | tosc | 350 | 500 | 650 | kHz | $\mathrm{R}=51 \mathrm{k} \Omega$ |  |
| Propagation Delay Time | tplz |  |  | 300 | ns | $\left\{\begin{array}{l} \text { CLK } \rightarrow \text { Dout } \\ \mathrm{CL}=15 \mathrm{pF}, \mathrm{RL}=10 \mathrm{k} \Omega \end{array}\right.$ |  |
|  | tpzL |  |  | 100 | ns |  |  |
| Rise Time | ttzH1 |  |  | 2 | $\mu \mathrm{S}$ | $\mathrm{CL}=300 \mathrm{pF}$ | Seg ${ }_{1}$ to Seg ${ }_{11}$ |
|  | tizH2 |  |  | 0.5 | $\mu \mathrm{S}$ |  | Grid ${ }_{1}$ to Grid 6 , Seg12/Grid 11 to Seg16/Grid7 |
| Fall Time | tthz |  |  | 120 | $\mu \mathrm{S}$ | $\mathrm{CL}=300 \mathrm{pF}$, Segn, Gridn |  |
| Maximum Clock Frequency | $\mathrm{f}_{\text {max }}$. | 1 |  |  | MHz | Duty = 50 \% |  |
| Input Capacitance | Cl |  |  | 15 | pF |  |  |

TIMING CONDITIONS ( $\mathrm{Ta}=-20$ to $70^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to 5.5 V )

| PARAMETER | SYMBOL | MIN. | TYP. | MAX. | UNIT | TEST CONDITIONS |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Clock Pule Width | PWcLk | 400 |  |  | ns |  |
| Strobe Pulse Width | PWstb | 1 |  |  | $\mu \mathrm{~s}$ |  |
| Data Setup Time | tsetup | 100 |  |  | ns |  |
| Data Hold Time | thold | 100 |  |  | ns |  |
| Clock-Strobe Time | tcLk-stb | 1 |  |  | $\mu \mathrm{~s}$ | CLK $\uparrow \rightarrow$ STB $\uparrow$ |
| Wait Time | twait | 1 |  |  | $\mu \mathrm{~s}$ | CLK $\uparrow \rightarrow$ CLK $\downarrow^{\text {Note }}$ |

Note Refer to page 11.

## Switching Characteristic Waveforms



## Applications

Updating display memory by incrementing address


Command 1: sets display mode
Command 2: sets data
Command 3 : sets address
Data 1 to n : transfers display data (22 bytes max.)
Command 4: controls diplay

Updating specific address


Command 1: sets data
Command 2: sets address
Data: display data

## RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product. Please consult with our sales offices in cae other soldering process is used, or in case soldering is done under different conditions.
$\mu$ PC16312GB-3B4

| Soldering process | Soldering conditions | Symbol |
| :--- | :--- | :---: |
| Infrared ray reflow | Peak package's surface temperature: $235^{\circ} \mathrm{C}$ or below, <br> Reflow time: 30 seconds or below $\left(210^{\circ} \mathrm{C}\right.$ or higher $)$, <br> Number of reflow process: 2, Exposure limit*: None | IR35-00-2 |
| VPS | Peak package's surface temperature: $215^{\circ} \mathrm{C}$ or below, <br> Reflow time: 40 seconds or below $\left(200^{\circ} \mathrm{C}\right.$ or higher $)$, <br> Number of reflow process: 2, Exposure limit*: None | VP15-00-2 |
| Wave soldering | Solder temperature: $260^{\circ} \mathrm{C}$ or below, <br> Flow time: 10 seconds or below <br> Number of flow process: 1, Exposure limit*: None | WS60-00-1 |
| Partial heating method | Terminal temperature: $300{ }^{\circ} \mathrm{C}$ or below, |  |
| Flow time 10 seconds or below, |  |  |
| Exposure limit*: None |  |  |

* Exposure limit before soldering after dry-pack package is opened. Storage conditions: $25^{\circ} \mathrm{C}$ and relative humidity at $65 \%$ or less.

Note Do not apply more than a single process at once, except for "Partial heating method".

## 44 PIN PLASTIC QFP ( $\square 10$ )



## NOTE

Each lead centerline is located within $0.15 \mathrm{~mm}(0.006 \mathrm{inch})$ of its true position (T.P.) at maximum material condition.

| ITEM | MILLIMETERS | INCHES |
| :---: | :--- | :--- |
| A | $13.6 \pm 0.4$ | $0.535_{-0.016}^{+0.017}$ |
| B | $10.0 \pm 0.2$ | $0.394_{-0.009}^{+0.008}$ |
| C | $10.0 \pm 0.2$ | $0.394_{-0.009}^{+0.008}$ |
| D | $13.6 \pm 0.4$ | $0.535_{-0.016}^{+0.017}$ |
| F | 1.0 | 0.039 |
| G | 1.0 | 0.039 |
| H | $0.35 \pm 0.10$ | $0.014_{-0.005}^{+0.004}$ |
| I | 0.15 | 0.006 |
| J | $0.8(T . P)$. | 0.031 (T.P) |
| K | $1.8 \pm 0.2$ | $0.071_{-0.009}^{+0.008}$ |
| L | $0.8 \pm 0.2$ | $0.031_{-0.008}^{+0.009}$ |
| M | $0.15_{-0.05}^{+0.10}$ | $0.006_{-0.003}^{+0.004}$ |
| N | 0.10 | 0.004 |
| P | 2.7 | 0.106 |
| Q | $0.1 \pm 0.1$ | $0.004 \pm 0.004$ |
| R | $5^{\circ} \pm 5^{\circ}$ | $5^{\circ} \pm 5^{\circ}$ |
| S | 3.0 MAX. | 0.119 MAX. |
|  |  | P44GB-80-3B4-3 |

[MEMO]
[MEMO]

## FIP ${ }^{\text {TM }}$ is a trademark of NEC Corporation.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

