

Functional Description

The device uses byte-wide Direction (DIR) control and Output Enable ($\overline{\mathrm{OE}}$) controls. The DIR inputs determine the direction of data flow through the device. The $\overline{\mathrm{OE}}$ inputs disable the A and the B ports.
The part contains active circuitry which keeps all outputs disabled when V_{CC} is less than 2.2 V to aid in live insertion applications.

Logic Diagrams (Positive Logic)

ETL's Improved Noise Immunity

TTL input thresholds are typically determined by tempera-ture-dependent junction voltages which result in worst case input thresholds between 0.8 V and 2.0 V . By contrast, ETL provides greater noise immunity because its input thresholds are determined by current mode input circuits similar to those used for ECL or BTL. ETL's worst case input thresholds, between 1.4 V and 1.6 V , are compensated for temperature, voltage and process variations.

Truth Table (Each 8-bit Section)

Inputs		Operation
$\overline{\mathbf{O E}}$	DIR	
L	L	A Data to B Bus
L	H	B Data to A Bus
H	X	Isolation

Incident Wave Switching

When TTL logic is used to drive fully loaded backplanes, the combination of low backplane bus characteristic impedance, wide TTL input threshold range and limited TTL drive generally require multiple waveform reflections before a valid signal can be received across the backplane. The VME International Trade Association (VITA) defined ETL to provide incident wave switching which increases the data transfer rate of a VME backplane and extends the life of VME applications. TTL compatibility with existing VME backplanes and modules was maintained.

Incident Wave Switching (Continued)

To demonstrate the incident wave switching capability, consider a VME application. A VME bus must be terminated to +2.94 V with 190Ω at each end of its 21 card backplane. The surge impedance presented by a fully loaded VME backplane is approximately 25Ω. If the output voltage/current of an ABTC driver is plotted with this load, the inter-
section at 1.2 V for a falling edge and at 1.6 V for a rising edge does not reach the worst case input threshold of a second ABTC circuit. This is shown in the two figures below. However, an ETL driver located at one end of the backplane is able to provide incident wave switching because it has a higher drive and a tighter input threshold.

Estimated ETL/ABTC Initial Falling Edge Step

Because ETL has a much more precise input threshold region, an ETL receiver will interpret its predicted falling input of 0.85 V as a logic ZERO and the initial rising edge of 1.9 V as a logic ONE. This comparison is for the case of a 25Ω surge impedance backplane driven from one end.

Estimated ETL/ABTC Initial Rising Edge Step
$\mathrm{I}_{\text {OUT }}$ (mA)

The resulting ABTC and ETL waveform predictions and their input thresholds are compared below. This shows how ETL can achieve backplane speeds not always possible with conventional TTL compatible logic families.

Incident Wave Switching (Continued)

The figure V_{CC} Power-up Critical Voltages shows the relationship between $\overline{O E}$ and $V_{C C}$ while power is being applied and removed.

\mathbf{V}_{CC} and $\overline{\mathrm{OE}}$ Power-up Relationship

DC Latchup Source Current $-500 \mathrm{~mA}$ Over Voltage Latchup (I/O) 10 V Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.
Recommended Operating Conditions

Free Air Ambient Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Commercial	
Supply Voltage	+4.5 V to +5.5 V
Military	+4.5 V to +5.5 V
Commercial	$(\Delta \mathrm{t} / \Delta \mathrm{V})$
Minimum Input Edge Rate	$20 \mathrm{~ns} / \mathrm{V}$
Data Input	$50 \mathrm{~ns} / \mathrm{V}$

DC Electrical Characteristics

Symbol	Parameter		ETL16245		Units	V_{CC}	Conditions
			Min	Typ Max			
V_{IH}	Input HIGH Voltage	OE	2.0		V		Recognized HIGH Signal
		Other Inputs	1.6				
V_{IL}	Input LOW Voltage	$\overline{O E}$		0.8	V		Recognized LOW Signal
		Other Inputs		1.4			
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}\left(\overline{O E}_{\mathrm{n}}, \mathrm{DIR}\right)$
V_{OH}	Output HIGH Voltage	B Port	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$	$\mathrm{V}_{C C}-1$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$
		A Port	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}-1$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-60 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	B Port		$\begin{aligned} & 0.4 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
		A Port		$\begin{gathered} 0.55 \\ 0.9 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=90 \mathrm{~mA} \\ & \hline \end{aligned}$
${ }^{\text {IHOLD }}$	Bus Hold Current	A Port, B Port	$\frac{100}{-100}$		$\mu \mathrm{A}$	Min	$\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{HIGH}, \\ & \mathrm{~V}_{\mathrm{O}}=0.8 \mathrm{~V} \end{aligned}$
							$\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{HIGH}, \\ & \mathrm{~V}_{\mathrm{O}}=2.0 \mathrm{~V} \\ & \hline \end{aligned}$
IOFF	Output Current, Power Down			100	$\mu \mathrm{A}$	0.0	$\begin{aligned} & V_{C C} \text { Bias }=0 V \\ & V_{I} \text { or } V_{O} \leq 4.5 \mathrm{~V} \end{aligned}$
1	Input Current Control Pins	54ETL		± 10	$\mu \mathrm{A}$	5.5	$\mathrm{V}_{\text {IN }}=0$ or V_{CC}
		74ETL		± 5	$\mu \mathrm{A}$	5.5	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {CC }}$
$\begin{aligned} & \mathrm{l}_{\mathrm{IH}}+ \\ & \mathrm{I}_{\mathrm{OZH}} \\ & \hline \end{aligned}$	Output Leakage Current			50	$\mu \mathrm{A}$	5.5	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}, \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}}+ \\ & \mathrm{I}_{\mathrm{OZL}} \\ & \hline \end{aligned}$	Output Leakage Current			-50	$\mu \mathrm{A}$	5.5	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \overline{\mathrm{OE}}=2.0 \mathrm{~V}$

DC Electrical Characteristics (Continued)											
Symbol	Parameter			ETL16245			Units	V_{cc}	Conditions		
				Min	Typ	Max					
${ }^{\text {ICCH }}$	Power Supply Current					40	mA	Max	All Outputs HIGH,$\overline{\mathrm{OE}}=\mathrm{LOW}, \mathrm{DIR}=\mathrm{HIGH} \text { or LOW }$		
ICCL	Power Supply Current					80	mA	Max	All Outputs LOW,$\overline{\mathrm{OE}}=\mathrm{LOW}, \mathrm{DIR}=\mathrm{HIGH} \text { or LOW }$		
ICCZ	Power Supply Current					40	mA	Max	$\overline{\mathrm{OE}}=\mathrm{HIGH}$ All Others at V_{CC} or GND DIR $=$ HIGH or LOW		
$I_{C C D}$	Dynamic ICc No Load (Note 1)					0.15	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	Max	Outputs Open $\overline{\mathrm{OE}}_{\mathrm{n}}=\mathrm{GND}, \mathrm{DIR}=\mathrm{HIGH}$ One Bit Toggling, 50\% Duty Cycle		
V OLP	Quiet Output Maximum Dynamic V_{OL}					1.0	V	5.0	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note } 2) \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$		
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}			-1.4			V	5.0	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note } 2) \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$		
$\mathrm{V}_{\mathrm{OHV}}$	Minimum High Level Dynamic Output Voltage (Note 1)			2.7			V	5.0	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note } 4) \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$		
$\mathrm{V}_{\mathrm{IHD}}$	Minimum High Level Dynamic Input Voltage (Note 1)			2.0	1.5		V	5.0	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note } 3) \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$		
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage (Note 1)				1.2	0.8	V	5.0	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note } 3) \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$		
Note 1: Guaranteed, but not tested. Note 2: Max. number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven OV to 3 V . One output at LOW. Guaranteed, but not tested. Note 3: Max. number of data inputs (n) switching. $n-1$ inputs switching $0 V$ to 3 V . Input-under-test switching: 3 V to threshold ($\mathrm{V}_{\mathrm{ILD}}$), 0 OV to threshold ($\mathrm{V}_{\mathrm{IHD}}$). Guaranteed, but not tested. Note 4: Max. number of outputs defined as (n . $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output HIGH. Guaranteed, but not tested. AC Electrical Characteristics											
	Parameter	74ETL			54ETL			74ETL		Units	Fig. No.
Symbol		$\begin{aligned} & \mathbf{T}_{\mathbf{A}}=+25^{\circ} \mathbf{C} \\ & \mathbf{V}_{\mathbf{C C}}=+5 \mathbf{V} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \end{gathered}$			
		Min	Typ	Max	Min		ax	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A_{n} to B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$				1.5 1.5	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns	1, 2, 4
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay B_{n} to A_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$				$\begin{array}{r} 1.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns	1, 2, 4
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$				1.0 1.0	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns	1, 2, 3
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$				1.0 1.0	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns	1, 2, 3
t_{r}	Rise Time 1V \rightarrow 2V, A_{n} Outputs	1.2		3.0				1.	23.0	ns	1, 2, 4
t_{f}	Fall Time $2 \mathrm{~V} \rightarrow 1 \mathrm{~V}$, A_{n} Outputs	1.2		3.0				1.2	3.0	ns	1,2,4

Skew								
Symbol	Parameter	74ETL				54ETL	Units	Conditions
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ 16 \text { Outputs Switching } \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ 16 \text { Outputs Switching } \end{gathered}$			
		Max			Max			
tohs (Notes 1, 2) Pin	Pin-to-Pin Skew LH/HL An to Bn	1.3					ns	Figures 1, 2, 4
$\mathrm{t}_{\mathrm{OHS}}$ Pin (Notes 1, 2) LH	Pin-to-Pin Skew LH/HL Bn to An	1.3					ns	Figures 1, 2, 4
tps D (Notes 1, 2) B	Duty Cycle Skew Bn to An	2.0					ns	Figures 1, 2, 4
tps D (Notes 1, 2) A	Duty Cycle Skew An to Bn	2.0					ns	Figures 1, 2, 4
VME Extended Skew								
Symbol	Parameter	74ETL				54ETL	Units	Conditions
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ 16 \text { Outputs Switching } \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ 16 \text { Outputs Switching } \end{gathered}$		
			Max			Max		
tpV De (Notes 1, 2) Tr	Device-to-Device Skew LH/HL Transitions Bn to An		4.0				ns	Figures 1, 2, 4
t_{CP} De (Notes 1, 2) Tr	Device-to-Device Skew LH/HL Transitions An to Bn		2.5				ns	Figures 1, 2, 4
t_{CP} Ch (Note 1, 3) with	Change in Propagation Delay with Load Bn to An		4.0				ns	Figures 1, 2, 4
$t_{\text {CPV }}$ (Notes 1, 2, 3) De in with	Device-to-Device, Change in Propagation Delay with with Load Bn to An		6.0				ns	Figures 1, 2, 4
Note 2: This is measured with both devices at the same value of $\mathrm{V}_{C C} \pm 1 \%$ and with package temperature differences of $20^{\circ} \mathrm{C}$ fro Note 3: This is measured with Rx in Figure 1 at 13Ω for one unit and at 56Ω for the other unit. Capacitance							HIGH to LOW m each othe	W, LOW to HIGH, er.
Symbol	Parameter	Typ	Max	Units	Conditions, $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$			
C_{IN}	Input Capacitance	5	8	pF	$\mathrm{V}_{C C}=0.0 \mathrm{~V}\left(\overline{\mathrm{OE}}_{\mathrm{n}}, \mathrm{DIR}\right)$			
$\mathrm{C}_{1 / \mathrm{O}}$ (Note 1)	1) Output Capacitance	9	12	pF		$\mathrm{c}=5.0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}\right)$		
Note 1: $\mathrm{C}_{\mathrm{I} / \mathrm{O}}$ is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883B, Method 3012.								

AC Loading

TL/F/11654-11
FIGURE 1. Standard AC Test Load
Note 1: Defined to emulate the range of VME bus transmission line loading as a function of board population and driver location. $\mathrm{Rx}=13 \Omega, 26 \Omega$ or 56Ω depending on test.

Test	Port	sW1	sW2	Rx
$t_{\text {PHZ }}$, $t_{\text {PLZ }}$	A, B	+7	Open	
$\mathrm{t}_{\text {PZH }}$, $\mathrm{t}_{\text {PZL }}$	A, B	+7	Open	
$\mathrm{t}_{\text {PLH }}$, $\mathrm{t}_{\text {PHL }}$	A	Open	Closed	26
$\mathrm{t}_{\text {PLH }}$, $\mathrm{t}_{\text {PHL }}$	B	Open	Open	
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	A	Open	Closed	26
$\mathrm{t}_{\text {PV }}$	A	Open	Closed	26
t_{CP}	B	Open	Open	
t_{CP}	A	Open	Closed	13 then 56
$\mathrm{t}_{\mathrm{CPV}}$	A	Open	Closed	13 and 56

FIGURE $1 a$

FIGURE 2. Input Pulse Requirements

Amplitude	Rep. Rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$
3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 2a. Test Input Signal Requirements

FIGURE 3. TRI-STATE Output HIGH and LOW Enable and Disable Times

TL/F/11654-14
FIGURE 4. Rise, Fall Time and Propagation Delay Waveforms

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

48-Lead SSOP ($0.300^{\prime \prime}$ Wide) (SS)
NS Package Number MS48A

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

