http://www.datasheet4u.com

900,000+ Datasheet PDF Search and Download

Datasheet4U offers most rated semiconductors datasheets pdf


Philips
Philips

74HC190 Datasheet

Presettable synchronous BCD decade up/down counter


74HC190 Datasheet Preview


INTEGRATED CIRCUITS
DATA SHEET
For a complete data sheet, please also download:
The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
74HC/HCT190
Presettable synchronous BCD
decade up/down counter
Product specification
File under Integrated Circuits, IC06
December 1990
Page 1

Philips Semiconductors
Presettable synchronous BCD decade
up/down counter
Product specification
74HC/HCT190
FEATURES
Synchronous reversible counting
Asynchronous parallel load
Count enable control for synchronous expansion
Single up/down control input
Output capability: standard
ICC category: MSI
GENERAL DESCRIPTION
The 74HC/HCT190 are high-speed Si-gate CMOS devices
and are pin compatible with low power Schottky TTL
(LSTTL). They are specified in compliance with JEDEC
standard no. 7A.
The 74HC/HCT190 are asynchronously presettable
up/down BCD decade counters. They contain four
master/slave flip-flops with internal gating and steering
logic to provide asynchronous preset and synchronous
count-up and count-down operation.
Asynchronous parallel load capability permits the counter
to be preset to any desired number. Information present on
the parallel data inputs (D0 to D3) is loaded into the counter
and appears on the outputs when the parallel load (PL)
input is LOW. As indicated in the function table, this
operation overrides the counting function.
Counting is inhibited by a HIGH level on the count enable
(CE) input. When CE is LOW internal state changes are
initiated synchronously by the LOW-to-HIGH transition of
the clock input. The up/down (U/D) input signal determines
the direction of counting as indicated in the function table.
The CE input may go LOW when the clock is in either
state, however, the LOW-to-HIGH CE transition must
occur only when the clock is HIGH. Also, the U/D input
should be changed only when either CE or CP is HIGH.
Overflow/underflow indications are provided by two types
of outputs, the terminal count (TC) and ripple clock (RC).
The TC output is normally LOW and goes HIGH when a
circuit reaches zero in the count-down mode or reaches “9”
in the count-up-mode. The TC output will remain HIGH
until a state change occurs, either by counting or
presetting, or until U/D is changed. Do not use the TC
output as a clock signal because it is subject to decoding
spikes. The TC signal is used internally to enable the RC
output. When TC is HIGH and CE is LOW, the RC output
follows the clock pulse (CP). This feature simplifies the
design of multistage counters as shown in Figs 5 and 6.
In Fig.5, each RC output is used as the clock input to the
next higher stage. It is only necessary to inhibit the first
stage to prevent counting in all stages, since a HIGH on
CE inhibits the RC output pulse as indicated in the function
table. The timing skew between state changes in the first
and last stages is represented by the cumulative delay of
the clock as it ripples through the preceding stages. This
can be a disadvantage of this configuration in some
applications.
Fig.6 shows a method of causing state changes to occur
simultaneously in all stages. The RC outputs propagate
the carry/borrow signals in ripple fashion and all clock
inputs are driven in parallel. In this configuration the
duration of the clock LOW state must be long enough to
allow the negative-going edge of the carry/borrow signal to
ripple through to the last stage before the clock goes
HIGH. Since the RC output of any package goes HIGH
shortly after its CP input goes HIGH there is no such
restriction on the HIGH-state duration of the clock.
In Fig.7, the configuration shown avoids ripple delays and
their associated restrictions. Combining the TC signals
from all the preceding stages forms the CE input for a
given stage. An enable must be included in each carry
gate in order to inhibit counting. The TC output of a given
stage it not affected by its own CE signal therefore the
simple inhibit scheme of Figs 5 and 6 does not apply.
December 1990
2
Page 2

Philips Semiconductors
Presettable synchronous BCD decade
up/down counter
Product specification
74HC/HCT190
QUICK REFERENCE DATA
GND = 0 V; Tamb= 25 °C; tr = tf = 6 ns
SYMBOL
PARAMETER
CONDITIONS
tPHL/ tPLH
fmax
CI
CPD
propagation delay CP to Qn
maximum clock frequency
input capacitance
power dissipation capacitance per flip-flop
CL = 15 pF; VCC = 5 V
notes 1 and 2
Notes
1. CPD is used to determine the dynamic power dissipation (PD in µW):
PD = CPD × VCC2 × fi + ∑ (CL × VCC2 × fo) where:
fi = input frequency in MHz
fo = output frequency in MHz
(CL × VCC2 × fo) = sum of outputs
CL = output load capacitance in pF
VCC = supply voltage in V
2. For HC the condition is VI = GND to VCC
For HCT the condition is VI = GND to VCC 1.5 V
TYPICAL
HC
22
28
3.5
36
HCT
24
30
3.5
38
UNIT
ns
MHz
pF
pF
ORDERING INFORMATION
See “74HC/HCT/HCU/HCMOS Logic Package Information”.
December 1990
3
Page 3

Philips Semiconductors
Presettable synchronous BCD decade
up/down counter
PIN DESCRIPTION
PIN NO.
3, 2, 6, 7
4
5
8
11
12
13
14
15, 1, 10, 9
16
SYMBOL
Q0 to Q3
CE
U/D
GND
PL
TC
RC
CP
D0 to D3
VCC
NAME AND FUNCTION
flip-flop outputs
count enable input (active LOW)
up/down input
ground (0 V)
parallel load input (active LOW)
terminal count output
ripple clock output (active LOW)
clock input (LOW-to-HIGH, edge-triggered)
data inputs
positive supply voltage
Product specification
74HC/HCT190
Fig.1 Pin configuration.
Fig.2 Logic symbol.
December 1990
Fig.3 IEC logic symbol.
4
Page 4
Part Number 74HC190
Manufactur Philips
Description Presettable synchronous BCD decade up/down counter
Total Page 13 Pages
PDF Download
74HC190 datasheet
Download PDF File
74HC190 datasheet
View Html for PC & Mobile


Related Datasheet

74HC190 , 74HC191 , 74HC191 , 74HC192 , 74HC193 , 74HC194 , 74HC195 ,

site map

webmaste! click here

contact us

Buy Components